1,718 research outputs found

    Sox2, a stemness gene, regulates tumor-initiating and drug-resistant properties in CD133-positive glioblastoma stem cells

    Get PDF
    AbstractBackgroundGlioblastoma multiforme (GBM) is the most lethal type of adult brain cancer and performs outrageous growth and resistance regardless of adjuvant chemotherapies, eventually contributing to tumor recurrence and poor outcomes. Considering the common heterogeneity of cancer cells, the imbalanced regulatory mechanism could be switched on/off and contribute to drug resistance. Moreover, the subpopulation of GBM cells was recently discovered to share similar phenotypes with neural stem cells. These cancer stem cells (CSCs) promote the potency of tumor initiation. As a result, targeting of glioma stem cells has become the dominant way of improving the therapeutic outcome against GBM and extending the life span of patients. Among the biomarkers of CSCs, CD-133 (prominin-1) has been known to effectively isolate CSCs from cancer population, including GBM; however, the underlying mechanism of how stemness genes manipulate CSC-associated phenotypes, such as tumor initiation and relapse, is still unclear.MethodsTumorigenicity, drug resistance and embryonic stem cell markers were examined in primary CD133-positive (CD133+) GBM cells and CD133+ subpopulation. Stemness signature of CD133+ GBM cells was identified using microarray analysis. Stem cell potency, tumorigenicity and drug resistance were also tested in differential expression of SOX2 in GBM cells.ResultsIn this study, high tumorigenic and drug resistance was noticed in primary CD-133+ GBM cells; meanwhile, plenty of embryonic stem cell markers were also elevated in the CD-133+ subpopulation. Using microarray analysis, we identified SOX2 as the most enriched gene among the stemness signature in CD133+ GBM cells. Overexpression of SOX2 consistently enhanced the stem cell potency in the GBM cell lines, whereas knockdown of SOX2 dramatically withdrew CD133 expression in CD133+ GBM cells. Additionally, we silenced SOX2 expression using RNAi system, which abrogated the ability of tumor initiation as well as drug resistance of CD133+ GBM cells, suggesting that SOX2 plays a crucial role in regulating tumorigenicity in CD133+ GBM cells.ConclusionSOX2 plays a crucial role in regulating tumorigenicity in CD133+ GBM cells. Our results not only revealed the genetic plasticity contributing to drug resistance and stemness but also demonstrated the dominant role of SOX2 in maintenance of GBM CSCs, which may provide a novel therapeutic target to overcome the conundrum of poor survival of brain cancers

    Obliquity pacing of the western Pacific Intertropical Convergence Zone over the past 282,000 years

    Get PDF
    The Intertropical Convergence Zone (ITCZ) encompasses the heaviest rain belt on the Earth. Few direct long-term records, especially in the Pacific, limit our understanding of long-term natural variability for predicting future ITCZ migration. Here we present a tropical precipitation record from the Southern Hemisphere covering the past 282,000 years, inferred from a marine sedimentary sequence collected off the eastern coast of Papua New Guinea. Unlike the precession paradigm expressed in its East Asian counterpart, our record shows that the western Pacific ITCZ migration was influenced by combined precession and obliquity changes. The obliquity forcing could be primarily delivered by a cross-hemispherical thermal/pressure contrast, resulting from the asymmetric continental configuration between Asia and Australia in a coupled East Asian-Australian circulation system. Our finding suggests that the obliquity forcing may play a more important role in global hydroclimate cycles than previously thought

    Enhanced heterozygosity from male meiotic chromosome chains is superseded by hybrid female asexuality in termites

    Get PDF
    Although males are a ubiquitous feature of animals, they have been lost repeatedly in diverse lineages. The tendency for obligate asexuality to evolve is thought to be reduced in animals whose males play a critical role beyond the contribution of gametes, for example, via care of offspring or provision of nuptial gifts. To our knowledge, the evolution of obligate asexuality in such species is unknown. In some species that undergo frequent inbreeding, males are hypothesized to play a key role in maintaining genetic heterozygosity through the possession of neo-sex chromosomes, although empirical evidence for this is lacking. Because inbreeding is a key feature of the life cycle of termites, we investigated the potential role of males in promoting heterozygosity within populations through karyotyping and genome-wide single-nucleotide polymorphism analyses of the drywood termite Glyptotermes nakajimai. We showed that males possess up to 15 out of 17 of their chromosomes as sex-linked (sex and neo-sex) chromosomes and that they maintain significantly higher levels of heterozygosity than do females. Furthermore, we showed that two obligately asexual lineages of this species—representing the only known all-female termite populations—arose independently via intraspecific hybridization between sexual lineages with differing diploid chromosome numbers. Importantly, these asexual females have markedly higher heterozygosity than their conspecific males and appear to have replaced the sexual lineages in some populations. Our results indicate that asexuality has enabled females to supplant a key role of males

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Genome-Wide uH2A Localization Analysis Highlights Bmi1-Dependent Deposition of the Mark at Repressed Genes

    Get PDF
    Polycomb group (PcG) proteins control organism development by regulating the expression of developmental genes. Transcriptional regulation by PcG proteins is achieved, at least partly, through the PRC2-mediated methylation on lysine 27 of histone H3 (H3K27) and PRC1-mediated ubiquitylation on lysine 119 of histone H2A (uH2A). As an integral component of PRC1, Bmi1 has been demonstrated to be critical for H2A ubiquitylation. Although recent studies have revealed the genome-wide binding patterns of some of the PRC1 and PRC2 components, as well as the H3K27me3 mark, there have been no reports describing genome-wide localization of uH2A. Using the recently developed ChIP-Seq technology, here, we report genome-wide localization of the Bmi1-dependent uH2A mark in MEF cells. Gene promoter averaging analysis indicates a peak of uH2A just inside the transcription start site (TSS) of well-annotated genes. This peak is enriched at promoters containing the H3K27me3 mark and represents the least expressed genes in WT MEF cells. In addition, peak finding reveals regions of local uH2A enrichment throughout the mouse genome, including almost 700 gene promoters. Genes with promoter peaks of uH2A exhibit lower-level expression when compared to genes that do not contain promoter peaks of uH2A. Moreover, we demonstrate that genes with uH2A peaks have increased expression upon Bmi1 knockout. Importantly, local enrichment of uH2A is not limited to regions containing the H3K27me3 mark. We describe the enrichment of H2A ubiquitylation at high-density CpG promoters and provide evidence to suggest that DNA methylation may be linked to uH2A at these regions. Thus, our work not only reveals Bmi1-dependent H2A ubiquitylation, but also suggests that uH2A targeting in differentiated cells may employ a different mechanism from that in ES cells

    Characterization of Epstein-Barr Virus miRNAome in Nasopharyngeal Carcinoma by Deep Sequencing

    Get PDF
    Virus-encoded microRNAs (miRNAs) have been shown to regulate a variety of biological processes involved in viral infection and viral-associated pathogenesis. Epstein-Barr virus (EBV) is a herpesvirus implicated in nasopharyngeal carcinoma (NPC) and other human malignancies. EBV-encoded miRNAs were among the first group of viral miRNAs identified. To understand the roles of EBV miRNAs in the pathogenesis of NPC, we utilized deep sequencing technology to characterize the EBV miRNA transcriptome in clinical NPC tissues. We obtained more than 110,000 sequence reads in NPC samples and identified 44 EBV BART miRNAs, including four new mature miRNAs derived from previously identified BART miRNA precursor hairpins. Further analysis revealed extensive sequence variations (isomiRs) of EBV miRNAs, including terminal isomiRs at both the 5′ and 3′ ends and nucleotide variants. Analysis of EBV genomic sequences indicated that the majority of EBV miRNA nucleotide variants resulted from post-transcriptional modifications. Read counts of individual EBV miRNA in NPC tissue spanned from a few reads to approximately 18,000 reads, confirming the wide expression range of EBV miRNAs. Several EBV miRNAs were expressed at levels similar to highly abundant human miRNAs. Sequence analysis revealed that most of the highly abundant EBV miRNAs share their seed sequences (nucleotides 2–7) with human miRNAs, suggesting that seed sequence content may be an important factor underlying the differential accumulation of BART miRNAs. Interestingly, many of these human miRNAs have been found to be dysregulated in human malignancies, including NPC. These observations not only provide a potential linkage between EBV miRNAs and human malignancy but also suggest a highly coordinated mechanism through which EBV miRNAs may mimic or compete with human miRNAs to affect cellular functions

    The 5p15.33 Locus Is Associated with Risk of Lung Adenocarcinoma in Never-Smoking Females in Asia

    Get PDF
    Genome-wide association studies of lung cancer reported in populations of European background have identified three regions on chromosomes 5p15.33, 6p21.33, and 15q25 that have achieved genome-wide significance with p-values of 10−7 or lower. These studies have been performed primarily in cigarette smokers, raising the possibility that the observed associations could be related to tobacco use, lung carcinogenesis, or both. Since most women in Asia do not smoke, we conducted a genome-wide association study of lung adenocarcinoma in never-smoking females (584 cases, 585 controls) among Han Chinese in Taiwan and found that the most significant association was for rs2736100 on chromosome 5p15.33 (p = 1.30×10−11). This finding was independently replicated in seven studies from East Asia totaling 1,164 lung adenocarcinomas and 1,736 controls (p = 5.38×10−11). A pooled analysis achieved genome-wide significance for rs2736100. This SNP marker localizes to the CLPTM1L-TERT locus on chromosome 5p15.33 (p = 2.60×10−20, allelic risk = 1.54, 95% Confidence Interval (CI) 1.41–1.68). Risks for heterozygote and homozygote carriers of the minor allele were 1.62 (95% CI; 1.40–1.87), and 2.35 (95% CI: 1.95–2.83), respectively. In summary, our results show that genetic variation in the CLPTM1L-TERT locus of chromosome 5p15.33 is directly associated with the risk of lung cancer, most notably adenocarcinoma

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    corecore